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PREFACE 

This Memorandum, prepared for the Advanced Research Projects Agency, 

is part of a study of those phenomena which affect the performance of 

optical or Infrared reconnaissance and guidance equipment. The objec- 

tive of these studies Is to provide sufficient understanding for the 

system analyst to compute performance estimates under various opera- 

tional conditions. 

In light of some recent experimental measvements of the lateral 

phase coherence, the results of RM-6266-ARPA have been extended to In- 

clude a theoretical treatment of the phase structure function. The 

agreement between theory and experiment Is found to be very good and 

supports our theory of the mutual coherence function (MCF). 

A quantitative understanding of the effect of atmospheric turbu- 

lence In reducing the lateral coherence of an Initially coherent wave- 

front Is required for the prediction of thr performance of various de- 

vices employing lasers for target acquisition or guidance in tactical 

missions. The MCF is of fundamental Importance in these applications 

because it determines (a) the limiting resolution obtainable along an 

atmospheric path, (b) the amount by which a finite beam spreads, and 

(c) the atmospherically limited signal-to-noise ratio using heterodyne 

detection. 

■- '-■-■■-■■■;■-'■■ i. ...^■v:-..;-.-;   .. ,..■ .v;i.:,v...j. 
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SUMMARY 

The most commonly used expression for the wave structure and mu- 

tual coherence function (M(.F) for an optical wave propagating In a 

turbulent atmosphere, which Is based on an unphyslcal extrapolation 

of the Kolmogorov spectrum. Is shown, In general, to be Incorrect. 

Along an atmospheric path, with specified turbulence parameters, the 

new M'JF Is shown to Imply greater resolution, less beam spreading, and 

greater heterodyne slgnal-to-nolse ratios than Indicated by previous 

calculations. These comparisons are made, and It Is shown that the 

percentage errors In the previous calculations Increase with decreas- 

ing propagation paths. In particular, where It was previously thought 

that the atmosphere limited the effective couerent detection size In 

heterodyne detection at all ranges, the present calculation reveals 

that over sufficiently short paths, there Is no size limit Imposed by 

the atmosphere. 

MMH WWWWW 
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I.  INTRODUCTION 

The mutual coherence function (MCF), defined as the cross-corre- 

lation function of the complex fields In a direction transverse to the 

direction of propagation, is the quantity that describes the loss of 

coherence of an Initially coherent wave propagating in a turbulent me- 

dium. As a result, the mutual coherence function is Important for a 

number of practical applications. It determines the slgnal-to-nolse 

ratio of an optical heterodyne detector, the limiting resolution ob- 

tainable along an atmospheric path, and the mean intensity distribution 

from an initially coherent wave emanating from a finite aperture. For 

a medium characterized by an index variation that is a gausslan random 

variable with zero mean, the mutual coherence function is given by 

exp (-^D), where D is the wave structure function.  ' 

This study first demonstrates that the most commonly used expres- 
Q-3) 

slon    for the wave structure function (given in Eq. (5) on p. A) 

is, in general, of limited validity. This expression was derived on 

the assumption that the Kolmogorov spectrum   of index of refraction 

fluctuations can be extrapolated to arbitrarily small wave numbers, K, 

for the purpose of computing the structure function. The apparent 

Justification for using the Kolmogorov power law for K < L~ (where L 
— o        o 

is the outer scale of turbulence) is that, although the extrapolated 

spectrum diverges, the Integrals necessary to compute the structure 

function from the spectrum remain convergent. However, the sensitivity 

of the result to the divergent spectrum proves to be considerable. Al- 

though Tataraki (Ref. 1, pp. 33-3A) has cautioned his readers against 

an unlimited extrapolation of the Kolmogorov spectrum, Eq. (5) has been 

based on Just such an extrapolation. 

In Section II arguments are given against the use of an unbounded 

spectrum (e.g., the extrapolated Kolmogorov spectrum), and the insensl- 

tlvlty of the wave structure function to any bounded  spectrum is demon- 

strated. Based on this insensitivity, a modified von Karman spectrum 

(which levels off for K < L ) is used to examine the effect of the 
— o 

outer scale on the structure function. The present analysis predicts 

a transverse (p) dependence of the plane wave structure function given 
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by p ' [1 - 0.8(p/l. ) /3] (where i = L I2v)  for p in the Kolmogorov 

inertial subrarge, J,  « p « L . Varving the form of the spectrum for 
-1 O O jy-j 

K < i  produces small variations in the coefficient of the (p/t ) 
o o 

term.  In addition, for p ~ 0.1 i, , our structure function has a bilog- 
o 

arithmlc slope closer to 3/2 than 5/3 and levels off for p > t . 
(4) *' 0 

Bouricius and Clifford   recently measured the phase structure 

function at 0.6328 y over a 50-m path 1.6 m above the ground for trans- 
* 

verse separations varying from 1 cm to 2 m.  From temperature measure- 

ments, they also deduced the index structure constant and the outer 

scale (the latter agreeing reasonably well with the height above the 

ground).  Their results are in agreement with the 3/2 dependence dis- 

cussed above and display a leveling off for separations of the order 

p ~ L .  Buser   has also made measurements of the phase structure O r 

function at 0.6328 u over a 50-m path 1.75 m above the ground for p = 
5/3 

22 cm; he obtains a slope always less than the previously predicted p 

In Section III it is shown that there exist three distinct propa- 

gation distance regimes for which approximate expressions for the mu- 

tual coherence function can be found. These formulae with the respec- 

tive ranges of validity are presented In the Table for the modified von 

Karman spectrum of Section II. 

In Section IV we calculate the implications of our expression for 

the MCF with regard to resolution and beam spreading.  In particular, 

we show the coherence length (defined as the transverse separation at 

which the MCF is equal to e ) can be considerably greater than the 

previously accepted value. Comparison with this value predicts an in- 

crease In the implied resolution and a decrease in the implied beam 

spreading. 

Finally, in Section V we examine the implications with regard to 

coherent optical detection. Comparing our results for heterodyne de- 
(3) 

tectlon with those of Fried,   we predict a greater long-term average 

signal-to-noise ratio.  In particular, where Fried finds a maximum use- 

ful receiver diameter for all ranges, we find that, for distances small 

compared with the mean field decay length z  (defined in Section II), 

the signal-to-noise ratio Increases indefinitely with receiver size. 

For short propagation paths, the wave and phase structure function 
are identical (Ref. 1). 
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II.  THE SPECTRUM AND WAVE STRUCTURE FUNCTION 

The analysis is based on the expression for the wave structure 

tlon for the case o 

tropic turbulent medium 

function for the case of a plane wave incident upon a homogeneous, iso- 

.(1) 

D(p,z) = Su'k ■i [1 - .1 (kp)l$ (K) KdK 
o     n (1) 

where k is the optical wave number, p is the transverse separation at 

propagation distance z, and * (K) is the three-dimensional spectral 

density of the index of refraction fluctuation. Equation (1) may be 
* 

written in the form 

D(p,z) = — 
c 

foe> 

1 - -' 
)0 Jo(Kp)*n(K) KdK 

So V1^ KdK 
(2) 

where 

2 2 f00        T1 
ZTTV \  * (K) KdK 
.     3o n      J (3) 

.(D can be shown   to be the propagation distance in which the mean field 

of a plane (or spherical) wave, (U), decays to e  from its value at 

the source (the angular brackets denote an ensemble average). 

The spectral density most commonly used to represent atmospheric 

index of refraction fluctuations is that due to Kolmogorov 

* (K) - 0.033C2K"11/3 
n n 

(4) 

In deriving Eq. (1) we have assumed that *n is not &  tune tlon of 
propagation distance. The modification of Eq. (1) to include an explicit 
dependence on range Is that z*n(K) "♦• Jn ^(K.z') dz'. For spherical wave 
propagation let z[l - J0(Kp)] -> /J dz' [1 - ^(Kpz'/z)]. 
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valid within the inertial subrange I," « K « *" , where I    " 2IT< 
o        o        o    o 

and L =» 2irL are the inner and outer scales of turbulence, respec- o     o i    r 

tively, and C is the index structure constant. 

In order to compute D from Eq. (1), it is necessary to make cer- 

tain reasonable assumptions regarding the spectrum outside of the iner- 
(1) (2 3) 

tial subrange. Tatarski   and others,  '  using the spectrum of Eq. 

(4) for all K, have computed the wave structure function given by 

D (p,z) - 2.91k2C^p5/3,    t    «  p « L (5) 
n o       o 

which is used for all z, the apparent justification being that the in- 

tegral in Eq. (1) converges. However, the sensitivity of D to the form 

of f;he spectrum for K < £  is considerable. This can be seen by car- 
0 -1 

rying out the integration in Eq. (1) for *  < K < », which gives 

r 1/3      21 
D^p.z) - 2.91kVp

5/3 k - 0.i>7{f)       + 0(^-)  , 

for A « p « L        (6) 
o        o 

The percentage difference is [(D. - D )/D1] x 100 - 67(p/l. ) ' [1 - 
1/3 -1 i   o  i o 

0.67(p/L )      ]  and equals <H 45 percent for p/l - 0.1. This example 

reveals the sensitivity of the structure function, in the inertial sub- 

rarge, to the physically unreasonable extrapolation of Eq. (4) for K < 

1," . Although the integral In Eq. (1) converges, an extrapolation would 

lead to divergent integrals for both the energy per unit volume of the 

fluctuations and the distance over which the mean field decays (I.e., 

z ). On physical grounds, the spectrum must begin leveling off for K 

corresponding to scales large compared with the separations over which 

the temperature fluctuations exhibit appreciable correlation, with a 

finite upper bound as K -* 0. Further, careful examination of Eqs. (1) 

or (2) reveals the insensitivity of the integrals to the spectral den- 

sity for any spectrum which remains bounded for K < t , and hence, for 

the purpose of computing the wave structue function, we suggest the use 
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of any bounded spectrum in this range.  The spectrum falls off very 

rapidly for K > *  due to viscous damping, and it is customary   to 

use a gaussian decay in this region. 

An example of a spectrum that is convenient for computational pur- 

poses is the modified von Karman spectrum 

, -Oc« )2 

0.033C e 

v« - (K2+:-V1/6 
o 

-1 * 
which implies a flat spectrum for K < t .  For example, substituting 

Eq. (6) into Eq. (3) yields, for i    « L , 
o    o 

z 
c 
* (o.39k2cV/3) (8a) 

and a phase structure given by 

D(p,z) - 2.91k2C2p5/3fl- 0.8o(|2-)  j,    Äo « p « Lo     (8b) 

which may be compared with Eq. (6). Figure 1 is a grav?  ' the mean 

field decay length z plotted versus wavelength X, for <-   100 cm and 
2C 

typical values of C . 

The quantity ZTT/LQ, rather than 1/L0, is introduced in Eq. (7) 
because we are comparing a wave number with a length. In any case, 
this parameter is to be regarded as the reciprocal of the wave number 
where the spectrum, In the low frequency regime, begins to deviate 
from a K"11'3 dependence. As has been noted, the resulting functional 
dependence on p is insensitive to the details of the low frequency be- 
havior of the spectrum, but depends only on the value of K where the 
spectrum beg'ins to lev«! off. 
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Fig. 1—Propagation distance z    as a function of wavelength 
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Substltutlng Eq. (7) into Eq. (2) and assuming p  » i    yields 

,  ,  «.(.  5 (o \5/3 f'   Jo(")" t V^^-i:1-!^  lutzr^ml   (p>>v  (9a) 

The modification of Eq. (9a) for spherical waves is given by 

D (p.z)  - ^ )l - 4 (j^-)573 I" du uJ (u) f1 r?      ^ATTTTT Zc'| 3Uoy       Jo 0        Jo[u2
+ (SP/i.o)2Y 

(p » io) (9b) 

2 
In Fig. 2, the quantity (z Mz)D, which Is Independent of X, z, and C 

(and I    for p » J, ) Is plotted as a function of p/i for both plane 

and spherical waves. Note that 

a. The theory predicts a power law dependence closer to 3/2 than 

5/3 for separations of ~ 0.1 h  , and 

b. The structure function saturates to a value of 4z/z for 

p » io. 

The power law dependence described In (a) has recently been observed 
(A) 

by Bourlclus and Clifford. 
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III. APPROXIMATE FORMULAE FOR THE MCF 

The mutual coherence function Is defined as the cross-correlation 

of the complex fields In a direction transverse to the direction of 

propagation: M(p,z) ■ (U(r.,Z;U (r-.z)), where p - [r. - rj . To 

second order in the refractive Index fluctuations in general, and to 

all order? when the Index fluctuations are a gausslan process, M(p,z) - 

exp {- ^D(p»z)}, where I) is given by Eqs. (1) or (2). 

While it  Is a simple numerical calculation to compute the MCF di- 

rectly using the spectrum of Eq. (7) in Eq. (1), it is useful to have 

approximate formulae for the MCF for estimating the coherence at vari- 

ous ranges. 

From Eq. (2) it follows that the MCF decreases monotonically from 

M(0,z) - 1 to M(»,z) - e" z'zc. This behavior is in accord with the 

physical picture of the light arriving at the two points r-, r. being 

scattered thi , '.gh statistically independent media when p - (r. - r9| is 

sufficiently large that M(p,z) - <U(r1)U (r2)> ■* (iKrj)) <U*(r2))  Hence 

for z « z  the MCF is essentially unity for all values of p, i.e., 

M(p,z) - 1,    z « z,. (1'J) 
c 

Considering the inertlal subrange, substituting Eq. (7) into Eq. 

(1), assuming p » I , and expanding to lowest order in (p/i ), we obtain 

Mj^p^) - exp ^- ^yi-kVzp5/3 ll - 0.80^-j   V,    for to  « p « Lo 

(ID 

In order that, at a given range, all of the transverse separations of 

Interest lie in the inertlal subrange. It is necessary that M(f, ,z) s: 

1, and M(L ,z) « 1, which is essentially the condition 

z « z « z. (12) 
c        i 

where z is given by Eq. (8), and z., defined by replacing t by t    in 
C X o     o 
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the formula for z , is a distance at which the coherence length of the 

field Is of the order of the Inner scale. 

For ranges greater than z., all of the p's of interest are small 

compared with the inner scale. The Bessel function in Eq. (1) can then 

be expanded in powers of p/* to yield 

M(p,z) s- exp f- 1.72k2cV1/3zp2j,    z » zi (13) 

It follows from the above discussion that, for z « z., the plane 

wave MCF does not depend on the inner scale and can be written as 

<tt) Mp(p,z) - exp [- |Dp(p,z)] B F(f-,f-) (14) 

where D is given by Eq. (9a). In Fig. 3 we compare the approximate 

expressions of Eqs. (5) and (10) with Eq. (14), taking z/z ■ 10 and 

plotting the results as a function of p/t. . For this comparison, the 

MCF corresponding to Eq. (5) has been written as 

Mo(p,z) - exp [- 3.72(z/zc)(p/Lo)
5/3] (15) 

and Eq. (11) as 

vp'z) ■ «p -3-72 f (f)5/311-0-80^)1 J (16) 

The comparison reveals that for z << z,, the field from a plane 

or spherical wave retains its transverse coherence to a greater degree 

than previously predicted. The approximate expressions for the MCF 

with respective ranges of validity are summarized in the Table on p. 12. 
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APPROXIMATE EXPRESSIONS FOR THE PLANE WAVE 
MODULATION TRANSFER FUNCTION 

Rangea MCF 

z « z c 1 

z    « z « z. c                       1 

exppfkVzp^l-O.SOCp/L)1/3]}. 

exp j- 3.72(z/zc)(p/lo)5/3 1 - 0.80(p/Lo)1/3   i 

z » z 

f               2 2 -1/3      2' exp    - 1.721c C I  1/:, zpZ      - 
L                 n 0 

exp    - 2.4(2/«^ (p/lo)2 

a 
The quantities z (the distance where the average field Is 

down by e ) and z^ (the distance where the coherence length of 
the field Is of the order of the Inner scale of turbulence) are 
given by (0.39k2c2t5/3)-l and (0,39^2^5/3)-^ respectively. 
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IV.  RESOLUTION AND BEAM SPREADING 

Two Important consequences of our more coherent MCF are that, for 

given turbulence parameters along a uniform atmospheric path, the mean 

visibility Is better, and the average amount by which a finite beam 

spreads Is smaller, than predicted by Fried.    Defining p as the 
0    -1 

transverse separation at which the atmospheric MCF Is reduced by e , 

then the minimum resolvable length at a distance z from an observer Is 

well known to be ~z/kp . It can be shown that when p Is small com- 
o o 

pared to the size of the transmitting aperture, the angular spread of 

a finite beam due to the atmosphere Is ~ 1/kp . 

As shown In the previous section, for distances small compared 
5 3 

with z. (- 10 z for L /I, ■ 10 ), the plane wave MCF does not depend 

on the Inner scale, and can be written as 

Mp(p,z) - exp [- iDp(p,z)l a ^JL^»^) .    * « z1     (17) 

where D Is given by Eq. (9a). The modification of Eq. (14) for spher- 

ical waves Is given by 

M8(p,z) - exp [- £)8(p,z)] B Fg(^-,^-) ,    z « z1     (18) 
\ o c/ 

where D Is given by Eq. (9b). In Figs. Aa and 4b we plot p /£ versus 
8 0  0 

z/z for plane and spherical waves, obtained by Inverting F(p /i , z/z ) 
C - o o    c 

e-1 and F (p /i , z/z ) - e" , respectively. On the same graph In each 
s o o    c 

figure, we compare our results with the MCF obtained from the structure 

function of Eq. (5) and the corresponding expression for spherical waves 

(obtained by multiplying the exponent in Eq. (5) by 3/8). For the pur- 

poses of this computation, we have written Eq. (5) in the form 

D0(p,z) - 7.44(|-)(|-)
5/3 

c  o 
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The percentage error in each case, defined as [(p - p')/p ] x 100, 

where p' satisfies M (p'.z) « e , Is indicated on the scale at the o o o' 
right. 

As the plane or spherical wave source is approached, the present 

analysis indicates that the transverse coherence of the field Increases 

at a greater rate than previously predicted. The errors Increase from 
4 

— 10 percent at 10 z to 100 percent at O.Sz , whereas for distances 
C -1  C 5 < O.Sz , the new MCF is never down to e  .  For z > z. (= 10 z for 

3 1      c 
L /A ■ 10 ), the use of M again gives a poor approximation to the new 

MCF, which in this region is given by Eq. (12). 
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V.  SIGNAL-TO-NOISE RATIO IN HETERODYNE DETECTION 

As an additional Illustration of the Implications of our more co- 

herent MCF, we use It to compute the slgnal-to-nolse ratio In a coher- 

ent detection system and compare the results with those computed by 
(3) (3) 

Fried.    The slgnal-to-nolse ratio is given by 

^p- - «(j) <A^) D2 I dx x Ko(x)M(Dx.z) (19) 

where A_ Is the signal amplitude, n/e Is the quantum efficiency measured 

In electrons per unit energy, D Is the diameter of the collecting aper- 

ture, and 

K0(x) - |TcoB^Cx) - x(l - x
2)1/2J (20) 

Then Eq. (19) can be written 

c ■   - 

for 0 <.z « z., where .5 • D/i , and 

dx x Ko(x)F^x, j-j (22) <HX 
where F Is given by Eq. (14). The function 41 contains the dependence 

of slgnal-to-nolse ratio on the collector diameter In the presence of 

atmospheric c'lstortlon, and Is plotted as a function of £■ In Figs. 5a 

and 5b for various values of z/z . The reduced slgnal-to-nolse ratio 

^, as computed from Eq. (22) (solid curve). Is compared with the results 

of Fried, who used the MCF of Eq. (15) (dashed curve). In general, 

the present analysis predicts a somewhat larger slgnal-to-nolse ratio. 
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The difference Is more pronounced for distances small compared with z , 

where Cs)/N as derived here Increases Indefinitely with aperture size. 

This result Is In contrast with that of Fried, who derived an effective 

limiting diameter beyond which Increasing the diameter results In very 

little Improvement In (S)/N for all ranges. For ranges very large com- 

pared with z    (but 3tlll small compared with z.), the MCF obtained from 

Eq. (1) approaches that obtained from Eq. (5), and the difference be- 

tween the two slgnal-to-nolse ratios tends to zero. This trend Is Il- 

lustrated In Fig. 6, In which the reduced slgnal-to-nolse ratio Is plot- 

ted as a function of z/z for .£ ■> 1. c 

Fig. 6—Reduced signal-to-noise ratio at  10.6 fi  in a heterodyne detection 
system a« a function of z/z    for the diameter of the collector equal to t 
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